Journal of Shabwah University for Humanities and Applied Sciences (A Bianual Refereed Scientific Periodical) Vol. 1, No. 2 December 2023 ## Relationship Between Weyl's Curvature Tensor and Other Curvature Tensors Dr. Adel Mohammed Ali Al-Qashbari Abeer Ahmed Mohammed AL-Maisary Associate Professor, Teaching Assistant, Dept. of Maths, Faculty of Eng., Aden University, Dept. of Maths, Faculty of Edu., Aden University adel_ma71@yahoo.com abeerahmed344@gmail.com #### Abstract In this paper, the authors investigated the relation between the Weyl's projective curvature tensor and some tensors, where the tensor W^i_{jkh} satisfies a generalized four recurrent property with respect to Cartan's covariant derivative. We call this type of space a generalized W^h -four recurrent Finsler space and denote by GW^h - FRF_n . #### List of Symbols W^{i}_{jkh} : Weyl's Projective Curvature Tensor; R^{i}_{jkh} : Cartan's Third Curvature Tensor; : Cartan's second curvature tensor; P^{i}_{jkh} : Cartan's forth curvature tensor; K^{i}_{jkh} : Berwald Curvature Tensor; W_{kh} : Ricci Tensor; W_k : Curvature Vector W_{jrkh} : associate curvature tensor for W_{jkh}^{i} #### Paper Information Date received: 08/08/2023 Date accepted: 28/09/2023 #### Keywords Finsler space F_n , Generalized W^h -four recurrent space, Cartan's covariant derivative of fourth order, projective curvature tensor W^i_{jkh} and Cartan's third curvature tensor R^i_{jkh} #### 1. Introduction Rund [27] introduced and studied A3-dimensional Riemannian space of recurrent. The generalized curvature tensors in recurrent Finsler space for first, second and third order by using the sense of Cartan's covariant derivative was discussed by ([3], [8], [11], [12], [15], [22], [23] and [24]). Some properties for Weyl's projective curvature tensor were studied by AL-Qashbari [7], Ahsan and Ali [1], Abu-Donia, Shenawy, and Abdehameed, [2], Emamian and Tayebi [15] and Qasem and Saleem [26]. The generalized birecurrent, trirecurrent Finsler space and higher order recurrent were studied in ([5], [6], [14], [17], [18], [20] and [25]). Also, Ahsan and Ali [4] introduced the curvature tensor for the spacetime of general relativity. Complete Finsler spaces of constant negative Ricci curvature was studied by Bidabad and Sepasi [13]. Qasem, and Saleem, [26] studied on W_{jkh}^h generalized birecurrent Finsler space, W^h -recurrent space. Decomposability of projective curvature tensor in recurrent Finsler space was studied by AL-Qashbari [9], Al-Qufail [10] and Thakur, Mishra, Lodhi [28] and others. Let the components of the corresponding metric tensor and Berwald's connection coefficients be denoted by \mathcal{G}_{ij} and \mathcal{G}^i_{jk} respectively. These are positively homogeneous of degree zero in the directional arguments. Due to their homogeneity in the directional arguments, we have their lower indices. The vectors y_i and y^i satisfy the following relations [27] a) $$y_i = g_{ij} y^j$$, b) $y_i y^i = F^2$, c) $\delta_j^k y^j = y^k$ and d) $y_{ik}^i = 0$. (1.1) The two sets of quantities g_{ij} and its associate tensor g^{ij} are related by [27]. a) $$g_{ij} g^{jk} = \delta_i^k = \begin{cases} 1 & , & if & i = k \\ 0 & , & if & i \neq k \end{cases}$$ (1.2) b) $$g_{ik}^{ij} = 0$$ and c) $g_{ij|k} = 0$. The tensor C_{ijk} defined by $$C_{ijk} = \frac{1}{2}\dot{\partial}_i g_{jk} = \frac{1}{4}\dot{\partial}_i\dot{\partial}_j\dot{\partial}_k F^2 , \text{ is known as (h) hv-torsion tensor [27]}.$$ (1.3) The (v) hv-torsion tensor C_{ik}^h and its associate (h) hv-torsion tensor C_{ijk} are related by [27]. a) $$C_{ik}^i y^j = C_{ki}^i y^j = 0$$ and b) $C_{ijk} y^j = 0$. (1.4) Cartan's covariant derivative of the metric function and the vector y^i vanish identically, i.e. a) $$l_{1k}^i = 0$$ and b) $F_{1k} = 0$. (1.5) The tensor W_{jkh}^i is known as projective curvature tensor (Weyl's projective curvature tensor), the tensor W_{jk}^i is known as projective torsion tensor (Weyl's torsion tensor) and the tensor W_j^i is known as projective deviation tensor (Wely's deviation tensor) are defined by $$W_{jkh}^{i} = H_{jkh}^{i} + \frac{2\delta_{j}^{i}}{(n+1)} H_{[hk]} + \frac{2y^{i}}{(n+1)} \dot{\partial}_{j} H_{[kh]} + \frac{\delta_{k}^{i}}{(n^{2}-1)} \left(n H_{jh} + H_{hj} + y^{r} \dot{\partial}_{j} H_{hr} \right)$$ $$- \frac{\delta_{h}^{i}}{(n^{2}-1)} \left(n H_{jk} + H_{kj} + y^{r} \dot{\partial}_{j} H_{kr} \right) ,$$ $$(1.6)$$ $$W_{jk}^{i} = H_{jk}^{i} + \frac{y^{i}}{(n+1)} H_{[jk]} + 2 \left\{ \frac{\delta_{[j]}^{i}}{(n^{2}-1)} \left(n H_{k]} - y^{r} H_{k] r \right) \right\}$$ (1.7) And $$W_j^i = H_j^i - H \,\delta_j^i - \frac{1}{(n+1)} \left(\dot{\partial}_r H_j^r - \dot{\partial}_j H \right) y^i \quad , \quad \text{respectively.}$$ The tensors W^i_{jkh} , W^i_{jk} and W^i_k are satisfying the following identities a) $$W_{jkh}^i y^j = W_{kh}^i$$ and b) $W_{jk}^i y^j = W_k^i$. (1.9) The projective curvature tensor W_{jkh}^{i} is skew-symmetric in its indices k and h. The Berwald curvature tensor H_{jkh}^i has the torsion tensor H_{kh}^i and deviation tensor H_j^i which arise from the covariant differentiation in the sense of Berwald. Where the tensors H_{jkh}^{i} and H_{kh}^{i} form the components of tensors, and are defined by a) $$H_{ikh}^i = \dot{\partial}_h G_{ik}^i + G_{ik}^r G_{rh}^i + G_{rih}^i G_k^r - \dot{\partial}_k G_{ih}^i - G_{ih}^r G_{rk}^i - G_{rik}^i G_h^r$$ and b) $$H_{kh}^{i} = \dot{\partial}_{h} G_{k}^{i} + G_{k}^{r} C_{rh}^{i} - \dot{\partial}_{k} G_{h}^{i} - G_{h}^{r} C_{rk}^{i}$$ (1.10) Contraction of the indices i and h in (1.11a) and (1.11b), we get the following a) $$H_{jki}^i = H_{jk}$$, b) $H_{ki}^i = H_k$, c) $H_{jk}^i y^j = H_k^i$ and d) $H_{jk}^i y^k = -H_j^i$. (1.11) Cartan's third curvature tensor R_{jkh}^i , the R-Ricci tensor R_{jk} in sense of Cartan. The h(v)-torsion tensor H_{kh}^i , the deviation tensor H_k^i , the curvature vector H_k and the scalar curvature H in sense of Berwald, is given by [27]. a) $$R_{jkh}^{i} = \Gamma_{hjk}^{*i} + (\Gamma_{ljk}^{*i}) G_h^l + C_{jm}^i (G_{kh}^m - G_{kl}^m G_h^l) + \Gamma_{mk}^{*i} \Gamma_{jh}^{*m} - k/h *$$, (1.12) b) $$R_{jkh}^i y^j = H_{kh}^i$$, c) $R_{jk} y^j = H_k$, d) $R_{jk} y^k = R_j$, e) $R_i^i = R_i$, f) $R_{jki}^i = R_{jk}$, g) $$H_i^i=(n-1)\,H$$, h) $g_{ir}R_{jkh}^i=R_{jrkh}$, i) $g_{ir}R_j^i=R_{jr}$ and j) $R_{jk}\,g^{jk}=R$. The tensor K^i_{rkj} as defined above is called Cartan's fourth curvature tensor. This tensor is positively homogeneous of degree zero in the directional argument and skew-symmetric in its last two lower indices k and j, i.e. a) $$K_{rkj}^{i} = \partial_{j} \Gamma_{kr}^{*i} + (\dot{\partial}_{l} \Gamma_{rj}^{*i}) G_{k}^{l} + \Gamma_{mj}^{*i} \Gamma_{kr}^{*m} - j/k$$ and b) $K_{jkh}^{i} = -K_{jhk}^{i}$. (1.13) The curvature tensor K_{jkh}^i satisfies the following relation too a) $$K_{jkh}^{i} y^{j} = H_{kh}^{i}$$ and b) $H_{jkh}^{i} = K_{jkh}^{i} + y^{m} (\partial_{j} K_{mkh}^{i})$ (1.14) Ricci tensor K_{jk} , curvature vector K_j and curvature scalar K of curvature tensor K_{jkh}^i are given by a) $$K_{jki}^i = K_{jk}$$, b) $K_{jk} y^k = K_j$, c) $K_{jk} y^j = H_k$ and d) $K_{jk} g^{jk} = K$. (1.15) #### 2. On Generalized W^h -Four- Recurrent Space In a non-flat Finsler space F_n , if there exists a non-zero covariant vectors λ_ℓ and μ_ℓ whose components are positively homogeneous functions of degree zero in \dot{x}^l , such that the curvature tensor W^i_{ikh} , which satisfied the following generalized recurrent Finsler space $$W_{jkh!\ell}^{i} = \lambda_{\ell} W_{jkh}^{i} + \mu_{\ell} \left(\delta_{h}^{i} g_{jk} - \delta_{k}^{i} g_{jh} \right) . \tag{2.1}$$ Where $W_{jkh}^i \neq 0$ and the quantities λ_ℓ and μ_ℓ are non-zero covariant vectors field with respect to \dot{x}^l and we called it the generalized W^h -recurrent space. From (2.1), the tensor W_{ikh}^i satisfied the following generalized birecurrence condition $$W_{jkh|\ell|m}^{i} = a_{\ell m} W_{jkh}^{i} + b_{\ell m} \left(\delta_{h}^{i} g_{jk} - \delta_{k}^{i} g_{jh} \right) . \tag{2.2}$$ Where $|\ell|m$ is h-covariant derivative of second order with respect to x^{ℓ} and x^{m} successfully, where $W^{i}_{jkh} \neq 0$, $a_{\ell m} = (a_{\ell \mid m} + \lambda_{\ell} \lambda_{m})$ and $b_{\ell m} = (\lambda_{\ell} \mu_{m} + \mu_{\ell \mid m})$, the quantities $a_{\ell m}$ and $b_{\ell m}$ are non-zero covariant vectors field and called it generalized W^{h} -birecurrent space. ^{* -}j/k means the subtraction from the former term by interchanging the indices k and h. Taking h-covariant derivative of (2.2), with respect to x^n and using (1.2c), we get $$W_{jkh|\ell|m|n}^{i} = a_{\ell m|n} W_{jkh}^{i} + a_{\ell m} W_{jkh|n}^{i} + b_{\ell m|n} \left(\delta_{h}^{i} g_{jk} - \delta_{k}^{i} g_{jh} \right) . \tag{2.3}$$ In view of (2.1), the equation (2.3) yields $$W_{jkh|\ell|m|n}^{i} = a_{\ell m|n} W_{jkh}^{i} + a_{\ell m} \{\lambda_{n} W_{jkh}^{i} + \mu_{n} (\delta_{h}^{i} g_{jk} - \delta_{k}^{i} g_{jh})\} + b_{\ell m|n} (\delta_{h}^{i} g_{jk} - \delta_{k}^{i} g_{jh}).$$ (2.4) Which implies $$W_{jkh|\ell|m|n}^{i} = c_{\ell mn} W_{jkh}^{i} + d_{\ell mn} \left(\delta_{h}^{i} g_{jk} - \delta_{k}^{i} g_{jh} \right) . \tag{2.5}$$ Where $|\ell|m|n$ is h-covariant derivative of third order with respect to x^{ℓ} , x^{m} and x^{n} successfully, $c_{\ell mn} = (a_{\ell | mn} + a_{\ell m} \lambda_{n})$ and $d_{\ell mn} = (a_{\ell | m} \mu_{n} + b_{\ell | m | n})$ are non-zero covariant tensors fields of third order, called recurrence tensors field. #### 3. Certain Generalized of Fourth Order in GW^h -FRF_n In this section our work in this proposal is defined as Certain generalized tensor of fourth order in GW^h -FRF_n, where $\|\ell\|$ m|n|s is h-covariant derivative of fourth order in the sense Certain with respect to x^ℓ , x^m , x^n and x^s . Taking h-covariant derivative of (2.5), with respect to x^s and using (1.2c), we get $$W_{jkh|\ell|m|n|s}^{i} = c_{\ell mn|s} W_{jkh}^{i} + c_{\ell mn} W_{jkh|s}^{i} + d_{\ell mn|s} (\delta_{h}^{i} g_{jk} - \delta_{k}^{i} g_{jh}) .$$ (3.1) In view of (2.1), the above equation can be written as $$W_{jkh|\ell|m|n|s}^{i} = c_{lmn|s}W_{jkh}^{i} + c_{\ell mn}\{\lambda_{s}W_{jkh}^{i} + \mu_{s}(\delta_{h}^{i}g_{jk} - \delta_{k}^{i}g_{jh})\}$$ $$+ d_{lmn|s}(\delta_{h}^{i}g_{jk} - \delta_{k}^{i}g_{jh}) .$$ (3.2) Which implies $$W_{jkh|\ell|m|n|s}^{i} = a_{\ell mns} W_{jkh}^{i} + b_{\ell mns} \left(\delta_{h}^{i} g_{jk} - \delta_{k}^{i} g_{jh} \right) . \tag{3.3}$$ **Definition 3.1.** A Finsler space for the tensor W_{jkh}^i is known Weyl's projective curvature tensor and satisfies the condition (3.3), and it will be called generalized four recurrent Finsler space. We shall call a generalized W^h -four-recurrent space and is denoted by GW^h - FRF_n . **Result 3.1.** Every generalized W^h -recurrent space is generalized W^h -four recurrent space. Transvecting (3.3) by y^j using (1.1e), (1.9a) and (1.1a), we get $$W_{kh|\ell|m|n|s}^{i} = a_{lmns}W_{kh}^{i} + b_{lmns}\left(\delta_{h}^{i}\mathcal{Y}_{k} - \delta_{k}^{i}\mathcal{Y}_{h}\right) . \tag{3.4}$$ Again, transvecting (3.4) by y^k using (1.1e), (1.9b) and (1.1b), we get $$W_{h|\ell|m|n|s}^{i} = a_{lmns}W_{h}^{i} + b_{lmns}(F^{2} - 1)\delta_{h}^{i}.$$ (3.5) Thus, we conclude **Theorem 3.1.** In GW^h -FRF_n, Wey'ls projective covariant derivative of forth order for the curvature torsion tensor W_{kh}^i and the curvature deviation tensor W_h^i are given by (3.4) and (3.5), respectively. Transvecting condition (3.3) by g_{ir} using (1.2c), (1.1d) and $g_{ir}W^i_{jkh}=W_{irkh}$, we get $$W_{jrkh|\ell|m|n|s} = a_{lmns}W_{jrkh} + b_{lmns}(g_{rh}g_{jk} - g_{kr}g_{jh}).$$ (3.6) Thus, we conclude **Theorem 3.2.** In GW^h -FRF_n, the associate curvature tensor W_{irkh} of the projective curvature tensor W_{jkh}^i is given by the condition (3.6). #### 4. Relation Between Weyl's Curvature Tensor and Other Curvature Tensors In this section, we shall find the relation between Weyl's curvature tensor W_{jkh}^i and some tensors to be generalized fourth recurrent Finsler space in sense of Cartain. We know that Weyl's projective curvature tensor W_{jkh}^i and Cartan's four curvature tensor R_{jkh}^i are connected by the formula $$W_{jkh}^{i} = R_{jkh}^{i} + \frac{1}{3} \left(\delta_{k}^{i} R_{jh} - g_{jk} R_{h}^{i} \right) . \tag{4.1}$$ Taking the h-covariant derivative of fourth order for the formula (4.1), x^l , x^m , x^n and x^s , successively, we get $$W_{jkh|\ell|m|n|s}^{i} = R_{jkh|\ell|m|n|s}^{i} + \frac{1}{3} \left(\delta_{k}^{i} R_{jh} - g_{jk} R_{h}^{i} \right)_{|\ell|m|n|s} . \tag{4.2}$$ By using the condition (3.2) and the formula (4.1) in (4.2), we get $$a_{\ell m n s} \left(R_{jkh}^{i} + \frac{1}{3} \left(\delta_{k}^{i} R_{jh} - g_{jk} R_{h}^{i} \right) \right) + b_{\ell m n s} \left(\delta_{h}^{i} g_{jk} - \delta_{k}^{i} g_{jh} \right)$$ $$= R_{jkh|\ell|m|n|s}^{i} + \frac{1}{3} \left(\delta_{k}^{i} R_{jh} - g_{jk} R_{h}^{i} \right)_{|\ell|m|n|s} . \tag{4.3}$$ Which implies $$R_{jkh|\ell|m|n|s}^{i} = a_{\ell mns} R_{jkh}^{i} + b_{\ell mns} \left(\delta_{h}^{i} g_{jk} - \delta_{k}^{i} g_{jh} \right) + \frac{1}{3} a_{\ell mns} \left(\delta_{k}^{i} R_{jh} - g_{jk} R_{h}^{i} \right) - \frac{1}{3} \left(\delta_{k}^{i} R_{jh} - g_{jk} R_{h}^{i} \right)_{|\ell|m|n|s} . \tag{4.4}$$ This shows that $$R^{i}_{jkh|\ell|m|n|s} = a_{\ell mns} R^{i}_{jkh} + b_{\ell mns} \left(\delta^{i}_{k} g_{jh} - \delta^{i}_{h} g_{jk} \right) . \tag{4.5}$$ If and only if $$\left(\delta_{k}^{i} R_{jh} - g_{jk} R_{h}^{i}\right)_{|\ell| m|n|s} = a_{\ell mns} \left(\delta_{k}^{i} R_{jh} - g_{jk} R_{h}^{i}\right) . \tag{4.6}$$ Thus, we conclude **Theorem 4.1.** In GW^h, Cartan's fourth curvature tensor R_{jkh}^i is generalized four recurrent Finsler space if and only if the tensor $(\delta_k^i R_{jh} - g_{jk} R_h^i)$ is four recurrent Finsler space. Transvecting (4.4) by y^j using (1.1e), (1.12b), (1.12c) and (1.1a), we get $$H_{kh|\ell|m|n|s}^{i} = a_{\ell m n s} H_{kh}^{i} + b_{\ell m n s} \left(\delta_{h}^{i} y_{k} - \delta_{k}^{i} y_{h}\right) + \frac{1}{3} a_{\ell m n s} \left(\delta_{k}^{i} H_{h} - y_{k} R_{h}^{i}\right)$$ $$- \frac{1}{3} \left(\delta_{k}^{i} H_{h} - y_{k} R_{h}^{i}\right)_{|\ell|m|n|s} .$$ $$(4.7)$$ This shows that $$H^{i}_{kh|\ell|m|n|s} = a_{\ell mns} H^{i}_{kh} + b_{\ell mns} (\delta^{i}_{h} y_{k} - \delta^{i}_{k} y_{h}) . \tag{4.8}$$ If and only if $$\left(\delta_{k}^{i} H_{h} - y_{k} R_{h}^{i}\right)_{|\ell|m|m|s} = a_{\ell m n s} \left(\delta_{k}^{i} H_{h} - y_{k} R_{h}^{i}\right). \tag{4.9}$$ Thus, we conclude **Theorem 4.2.** In GW^h -FRF_n, the h-covariant derivative of the four order for the torsion tensor H^i_{kh} (of curvature tensor H^i_{jkh}) is given by the condition (4.8) if and only if the tensor $\left(\delta^i_k H_h - y_k R^i_h\right)$ is four recurrent Finsler space. Further, transvecting (4.7) by y^k using (1.1e), (1.11c), (1.1b) and (1.1d), we get $$H_{h|\ell|m|n|s}^{i} = a_{\ell m n s} H_{h}^{i} + b_{\ell m n s} (F^{2} - 1) \delta_{h}^{i} - \frac{1}{3} a_{\ell m n s} (H_{h} y^{i} - F^{2} R_{h}^{i})$$ $$+ \frac{1}{3} (H_{h} y^{i} - F^{2} R_{h}^{i})_{|\ell|m|n|s} .$$ $$(4.10)$$ This shows that $$H_{h|\ell|m|n|s}^{i} = a_{\ell m n s} H_{h}^{i} + b_{\ell m n s} (F^{2} - 1) \delta_{h}^{i} . \tag{4.11}$$ If and only if $$(H_h y^i - F^2 R_h^i)_{|\ell|m|n|s} = a_{\ell mns} (H_h y^i - F^2 R_h^i) . (4.12)$$ Thus, we conclude **Theorem 4.3.** In GW^h-FRF_n, the h-covariant derivative of the four order for the deviation tensor H_h^i is (of Wey'ls projective curvature tensor H_{jkh}^i) is given by the condition (4.11), if and only if the tensor $(H_h y^i - F^2 R_h^i)$ is four recurrent Finsler space. Contracting the indices i and h in equations (4.7) and (4.11) using (1.11a), (1.11b), (1.2a), (1.1d), (1.1b), (1.12e) and (1.12g), we get $$H_{k|\ell|m|n|s} = a_{\ell mns} H_k + (n-1)b_{\ell mns} y_k + \frac{1}{3} a_{\ell mns} (H_k - y_k R) - \frac{1}{3} (H_k - y_k R)_{|\ell|m|n|s}.$$ (4.13) This shows that $$H_{k|\ell|m|n|s} = a_{\ell mns} H_k + (n-1)b_{\ell mns} y_k . (4.14)$$ If and only if $$(H_k - y_k R)_{|\ell|m|n|s} = a_{\ell mns}(H_k - y_k R)$$ (4.15) and $$H_{|\ell|m|n|s} = a_{\ell mns} H + \frac{n}{(n-1)} b_{\ell mns} (F^2 - 1) + \frac{1}{3} a_{\ell mns} \left(H - \frac{1}{(n-1)} F^2 R \right)$$ $$- \frac{1}{3} \left(H - \frac{1}{(n-1)} F^2 R \right)_{|\ell|m|n|s}.$$ $$(4.16)$$ This shows that $$H_{|\ell|m|n|s} = a_{\ell mns} H + \frac{n}{(n-1)} b_{\ell mns} (F^2 - 1) . \tag{4.17}$$ If and only if $$H_{|\ell|m|n|s} = a_{\ell mns} H \quad . \tag{4.18}$$ And $$(F^2R)_{|\ell|m|n|s} = a_{\ell mns}(F^2R) \quad . \tag{4.19}$$ The equations (4.14) and (4.17) show the curvature vector H_k and the scalar curvature H cannot vanish because the vanishing of any one of them would imply $b_{\ell mns} = 0$; a contradiction. Thus, we conclude **Theorem 4.4.** In GW^h -FRF_n, the curvature vector H_k and the scalar curvature H are given by the conditions (4.14) and (4.17) if and only if the tensors $(H_k - y_k R)$, H and $(F^2 R)$ are four recurrent Finsler space, respectively. Further, transvecting (4.4) by g_{ir} using (1.2c), (1.12h), (1.1d) and (1.12i), we get $$R_{jrkh|\ell|m|n|s} = a_{\ell mns} R_{jrkh} + b_{\ell mns} \left(g_{hr} g_{jk} - g_{kr} g_{jh} \right)$$ $$+ \frac{1}{3} a_{\ell mns} \left(g_{kr} R_{jh} - g_{jk} R_{rh} \right) - \frac{1}{3} \left(g_{kr} R_{jh} - g_{jk} R_{rh} \right)_{|\ell|m|n|s}.$$ (4.20) This shows that $$R_{jrkh|\ell|m|n|s} = a_{\ell mns} R_{jrkh} + b_{\ell mns} \left(g_{hr} g_{jk} - g_{kr} g_{jh} \right) . \tag{4.21}$$ If and only if $$a_{\ell mns}(g_{kr}R_{jh} - g_{jk}R_{rh}) = (g_{kr}R_{jh} - g_{jk}R_{rh})_{|\ell|m|n|s} . (4.22)$$ Thus, we conclude **Theorem 4.5.** In GW^h-FRF_n, the associate curvature tensor R_{jpkh} is given by the condition (4.21) if and only if the tensor $(g_{kr}R_{jh} - g_{jk}R_{rh})$ is four recurrent Finsler space. Contracting the indices i and h in (4.4) using (1.12f), (1.2a), (1.1d) and (1.12d), we get $$R_{jk|\ell|m|n|s} = a_{\ell mns} R_{jk} + (n-1) b_{\ell mns} g_{jk} + \frac{1}{3} a_{\ell mns} (R_{jk} - g_{jk} R)$$ (4.23) $$-\frac{1}{3}(R_{jk}-g_{jk}R)_{|\ell|m|n|s}.$$ This shows that $$R_{jk|\ell|m|n|s} = a_{\ell mns} R_{jk} + (n-1) b_{\ell mns} g_{jk} . {(4.24)}$$ If and only if $$(R_{jk} - g_{jk}R)_{|\ell|m|n|s} = a_{lmns} (R_{jk} - g_{jk}R)$$ (4.25) Transvecting (4.23) by g^{jk} using (1.2b), (1.12j) and (1.2a), we get $$R_{|\ell|m|n|s} = a_{\ell mns} R + n(n-1) b_{\ell mns} + \frac{1}{3} a_{lmns} (1-n) R - \frac{1}{3} ((1-n)R)_{|\ell|m|n|s}.$$ (4.26) This shows that $$R_{|\ell|m|n|s} = a_{\ell mns} R + a_{\ell mns} n(n-1) b_{\ell mns} . (4.27)$$ If and only if $$R_{|\ell|m|n|s} = a_{lmns} R \quad . \tag{4.28}$$ The equations (4.23) and (4.27) show that the Ricci tensor R_{jk} and the scalar curvature R cannot vanish because the vanishing of any one of them would imply $a_{\ell mns} = 0$; a contradiction. Thus, we conclude **Theorem 4.6**. In GW^h-FRF_n, the Ricci tensor R_{jk} and scalar curvature R are non-vanishing if and only if the tensors $(R_{jk} - g_{jk}R)$ and R are four recurrent Finsler space, respectively. It is known that Cartan's third curvature tensor R_{jkh}^i and Cartan's fourth curvature tensor K_{jkh}^i are connected by the formula ([16]). $$R_{ikh}^{i} = K_{ikh}^{i} + C_{ir}^{i} H_{hk}^{r} {.} {(4.29)}$$ Using the condition (4.28) in (4.1), we get $$W_{jkh}^{i} = K_{jkh}^{i} + C_{jr}^{i} H_{hk}^{r} + \frac{1}{3} \left(\delta_{k}^{i} R_{jh} - g_{jk} R_{h}^{i} \right). \tag{4.30}$$ Taking the h-covariant derivative of fourth order for the formula (4.29), x^l , x^m , x^n and x^s , successively, we get $$W_{jkh|\ell|m|n|s}^{i} = K_{jkh|\ell|m|n|s}^{i} + \left(C_{jr}^{i}H_{hk}^{r}\right)_{|\ell|m|n|s} + \frac{1}{3}\left(\delta_{k}^{i}R_{jh} - g_{jk}R_{h}^{i}\right)_{|\ell|m|n|s}. \tag{4.31}$$ Form equation (3.3) and using the condition (4.30), we get $$a_{\ell m n s} \left(K_{jkh}^{i} + C_{jr}^{i} H_{hk}^{r} + \frac{1}{3} \left(\delta_{k}^{i} R_{jh} - g_{jk} R_{h}^{i} \right) \right) + b_{\ell m n s} \left(\delta_{h}^{i} g_{jk} - \delta_{k}^{i} g_{jh} \right)$$ (4.32) $$=K^i_{jkh|\ell|m|n|s}+\left(C^i_{jr}H^r_{hk}\right)_{|\ell|m|n|s}+\frac{1}{3}\left(\delta^i_k\,R_{jh}-g_{jk}\,R^i_h\right)_{|\ell|m|n|s}\;.$$ Which can be written as $$K_{jkh|\ell|m|n|s}^{i} = a_{\ell m n s} K_{jkh}^{i} + b_{\ell m n s} \left(\delta_{h}^{i} g_{jk} - \delta_{k}^{i} g_{jh}\right) + a_{\ell m n s} \left(C_{jr}^{i} H_{hk}^{r}\right)$$ $$+ \frac{1}{3} a_{\ell m n s} \left(\delta_{k}^{i} R_{jh} - g_{jk} R_{h}^{i}\right) - \left(C_{jr}^{i} H_{hk}^{r}\right)_{|\ell|m|n|s} - \frac{1}{3} \left(\delta_{k}^{i} R_{jh} - g_{jk} R_{h}^{i}\right)_{|\ell|m|n|s}.$$ $$(4.33)$$ This shows that $$K_{jkh|\ell|m|n|s}^{i} = a_{\ell mns} K_{jkh}^{i} + b_{\ell mns} \left(\delta_{h}^{i} g_{jk} - \delta_{k}^{i} g_{jh} \right) . \tag{4.34}$$ If and only if $$\left(C_{jr}^{i}H_{hk}^{r}\right)_{|\ell|m|n|s} = a_{\ell mns}\left(C_{jr}^{i}H_{hk}^{r}\right) \tag{4.35}$$ and $$\left(\delta_k^i R_{jh} - g_{jk} R_h^i\right)_{|\ell|m|n|s} = a_{\ell mns} \left(\delta_k^i R_{jh} - g_{jk} R_h^i\right) .$$ Thus, we conclude **Theorem 4.7.** In GW^h, Cartan's fourth curvature tensor K_{jkh}^i is generalized four recurrent Finsler space if and only if the tensors $\left(C_{jr}^iH_{hk}^r\right)$ and $\left(\delta_k^iR_{jh}-g_{jk}R_h^i\right)$ are four recurrent Finsler space, respectively. Contracting the indices i and h in (4.33) using (1.15a), (1.2a), (1.1d) and (1.12d), we get $$K_{jk|\ell|m|n|s} = a_{lmns} K_{jk} + b_{lmns} (n-1) g_{jk} + a_{lmns} (C_{jr}^{i} H_{ik}^{r}) + \frac{1}{3} a_{lmns} (R_{jk} - g_{jk} R) - (C_{jr}^{i} H_{ik}^{r})_{|\ell|m|n|s} + \frac{1}{3} (R_{jk} - g_{jk} R)_{|\ell|m|n|s} .$$ $$(4.36)$$ This shows that $$K_{jk|\ell|m|n|s} = a_{lmns} K_{jk} + b_{lmns} (n-1) g_{jk} . (4.37)$$ If and only if $$\left(C_{jr}^{i}H_{ik}^{r}\right)_{|\ell|m|n|s} = a_{lmns}\left(C_{jr}^{i}H_{ik}^{r}\right)$$ and $$(R_{jk} - g_{jk}R)_{|\ell|m|n|s} = a_{lmns}(R_{jk} - g_{jk}R).$$ Thus, we conclude **Theorem 4.8.** In GW^h-FRF_n, the Ricci curvature tensor K_{jk} for (Cartan's fourth curvature tensor K_{jkh}^i) is generalized four recurrent Finsler space if and only if the tensors $\left(C_{jr}^iH_{ik}^r\right)$ and $\left(R_{jk}-g_{jk}R\right)$ are four recurrent Finsler space, respectively. Transvecting (4.35) by y^k using (1.1e), (1.15b), (1.1a), (1.12d) and (1.11d), we get $$K_{j|\ell|m|n|s} = a_{lmns} K_j + b_{lmns} (n-1) y_j - a_{lmns} (C_{jr}^i H_i^r) + \frac{1}{3} a_{lmns} (R_j - y_j R)$$ $$+ (C_{jr}^i H_i^r)_{|\ell|m|n|s} - \frac{1}{3} (R_j - y_j R)_{|\ell|m|n|s}.$$ (4.39) This shows that $$K_{j|\ell|m|n|s} = a_{lmns} K_j + b_{lmns} (n-1) y_j$$ (4.40) If and only if $$\begin{aligned} \left(C_{jr}^{i} H_{i}^{r}\right)_{|\ell|m|n|s} &= a_{lmns} \left(C_{jr}^{i} H_{i}^{r}\right) \\ \text{and} \\ \left(R_{j} - y_{j} R\right)_{|\ell|m|n|s} &= a_{lmns} \left(R_{j} - y_{j} R\right). \end{aligned} \tag{4.41}$$ Thus, we conclude **Theorem 4.9.** In GW^h-FR F_n, the curvature tensor K_j for (Cartan's fourth curvature tensor K_{jkh}^i) is generalized four recurrent Finsler space if and only if the tensors $(C_{jr}^i H_i^r)$ and $(R_j - y_j R)$ are four recurrent Finsler space, respectively. #### 5. Conclusions and future work A Finsler space is called generalized Wh-four recurrent space if it satisfies the condition (3.2). In GWh-FR F_n , the Wh-covariant derivative of the fourth order for Wely's projective torsion tensor W_{kh}^i and Wely's projective deviation tensor W_h^i are given by (3.4) and (3.5). In GWh-FR F_n , some necessary and sufficient condition of Cartan's third curvature tensor R_{jkh}^i is generalized four recurrent if and only if the equation (4.6) is good hold, and the h(v)-torsion tensor H_{kh}^i is generalized four recurrent if and only if the equation (4.8) is good hold. In GWh-FR F_n , we get the same relationship between Wely's projective torsion tensor and the tensors R_{jkh}^i and K_{jkh}^i . In GWh-FR F_n , Cartan's fourth curvature tensor K_{jkh}^i is generalized four recurrent if and only if the tensors $\left(C_{jr}^i H_{hk}^r\right)$ and $\left(\delta_k^i R_{jh} - g_{jk} R_h^i\right)$ are four recurrent Finsler space. W^h -covariant derivative of the fourth order for the K-Ricci tensor K_{jk}^i is generalized four recurrent if and only if the tensors $\left(C_{jr}^i H_{lk}^r\right)$ and $\left(R_{jk} - g_{jk} R\right)$ are four recurrent Finsler space. Authors recommend the need for continuing research and development in generalized W^h five recurrent Finsler spaces and interlard it with the properties of special spaces for Finsler space. #### References - [1] **Ahsan, Z.** and **Ali M.** (2014). On Some Properties of W-Curvature Tensor, *Palestine Journal of Mathematics*, Palestine, Vol.3(1), 61-69. - [2] **Abu-Donia**, **H.**, **Shenawy**, **S.** and **Abdehameed**, **A.** (2020). The W*-Curvature Tensor on Relativistic Space-times, *Kyungpook Mathematical Journal*, Vol. 60, 185-195 - [3] **Abdallah**, **A.A.A.** (2017). On generalized *B*-recurrent Finsler space, M. Sc. Dissertation, University of Aden, (Aden), (Yemen), 134pp. - [4] **Ahsan, Z.** and **Ali**, M. (2016). Curvature Tensor for the Spacetime of General Relativity, *Palestine Journal of Mathematics*, Vol.2, 28 Feb.,1-15. - [5] **AL-Qashbari, A.M.A., Qasem, F.Y.A.** (2017). Study on Generalized BR-Trirecurrent Finsler Space, *Journal of Yemen engineer*, Faculty of Engineering, University of Aden, Vol.15, 79-89. - [6] **AL-Qashbari, A.M.A.** (2020). On Generalized for Curvature Tensors P_{jkh} of Second Order in Finsler Space, *Univ. Aden J. Nat. and Appl.*, Sc., Vol. 24,(1), 171-176. - [7] **AL-Qashbari, A.M.A.** (2019). Some Properties for Weyl's Projective Curvature Tensors of Generalized *W*^h-Birecurrent in Finsler spaces, *Univ. Aden J. Nat. and Appl.*, *Sc.*, Vol.23,(1),181-189. - [8] **AL-Qashbari, A.M.A.** (2020). Some Identities for Generalized Curvature Tensors in *B*-Recurrent Finsler Space, *Journal of New Theory*, ISSN:2149-1402, Vol.32, 30-39. - [9] **AL-Qashbari, A.M.A.** (2020). Recurrence Decompositions in Finsler Space, *Journal of Mathematical Analysis and Modeling*, ISSN:2709-5924, Vol.1, 77-86. - [10] Al-Qufail, M.A.H. (2017). Decomposability of Curvature Tensors in Non-Symmetric Recurrent Finsler Space, *Imperial Journal of Interdisciplinary Research*, Vol.3, Issue-2, 198-201. - [11] **Ali, M., Salman, M. and Bilal, M.** (2021). Conharmonic curvature inheritance in space-time of general relativity. *Journal of M. A. and A.* Universe Vol.7(12), 505-514. - [12] Ali, M., Salman, M., Pundeer, A. N, and Suh, Y. (2022). On some properties of M-projective Curvature tensor in space-time of general relativity, Arxiv:2209. 12692v1, Vol.23. 13-24. - [13] **Bidabad**, **B.**, **Sepasi**, **M.** (2020). Complete Finsler Spaces of Constant Negative Ricci Curvature, *J. of Math. D.G.* Vol.1.(19). 1-12. - [14] **Misra, B., Misra, S. B., Srivastava, K.** and **Srivastava, R. B.** (2014). Higher Order Recurrent Finsler Spaces with Berwald's Curvature Tensor Field, *Journal of Chemical, Biological and Physical Sciences*, Vol.4. (1), 624-631. - [15] **Emamian, M.H.** and **Tayebi, A.** (2015). Generalized Douglas-Weyl Finsler Metrics, *Iranian Journal of Mathematical Sciences and Informatics*, Vol.10. (2), 67-75. - [16] **Goswami**, **A**. (2017). A study of certain types of special Finsler spaces in differential geometry: Systematic Review, *journal of Mathematics Applied in Science and Technology*, Issue 0973-6344, Vol.9. (1), 23-30. - [17] Hadi, W.H.A. (2016). Study of Certain Generalized Birecurrent in Finsler space, Ph.D. Thesis, University of Aden, (Aden), (Yemen), 146pp. - [18] Pandey, H.D. and Tripathi, S.D. (1981-1982). W-THIRD ORDER RECURRENT - FINSLER SPACE, Seri A, J. Istanbul Univ. Fen Fak., Vol.46, 61-66. - [19] **Pandey, P.N.**, **Saxena, S.** and **Goswani, A.** (2011). On a generalized H-recurrent space, *Journal of International Academy of Physical Sciences*, Vol.15, 201-211. - [20] **Qasem**, **F.Y.A.** (2016). On generalized H-birecurrent Finsler space, *International Journal of Mathematics and its Applications*, Vol.4, Issue 2-B, 51-57. - [21] **Qasem, F.Y.A.** and **Abdallah**, **A.A.A.** (2017). On generalized *BR*-recurrent Finsler space, *Electronic Aden University Journal*, No.6, 27-33. - [22] **Qasem, F.Y.A.** and **Abdallah**, **A.A.A.** (2016). On certain generalized *BR*-recurrent Finsler space, *International Journal of Applied Science and Mathematics*, Vol.3, Issue 3, 111-114. - [23] **Qasem, F.Y.A.** and **Abdallah**, **A.A.** (2016). On study generalized *BR*-recurrent Finsler space, *International Journal of Mathematics and its Applications*, Vol.4, Issue 2-B, 113-121. - [24] **Qasem, F.Y.A., Al-Qashbari, A. M. A.** and **Husien, M. M. Q.** (2019). On Study Generalized R^h-Trirecurrent Affinely Connected Space, *Journal of Scientific and Engineering Research*, Vol. 6, Issue 1, 179-186. - [25] **Qasem, F.Y.A.** and **Baleedi, S.M.S.** (2016). On a Generalized *BK*-Recurrent Finsler Space, *International Journal of Science Basic and Applied Research*, Vol.28(3), 195-203. - [26] **Qasem, F.Y.A.** and **Saleem, A.A.M.** (2010). On W_{jkh}Generalized Birecurrent Finsler Space, *Journal of the Faculties of Education*, University of Aden, (Aden), (Yemen), No.11, 21-32. - [27] **Rund, H.** (1959). *The differential geometry of Finsler spaces, Springer-Verlag, Berlin Göttingen-Heidelberg*, 2nd Edit. (in Russian), Nauka, (Moscow), - [28] **Thakur, M., Mishra, C.K. and Lodhi, G**. (2014). Decomposability of Projective Curvature Tensor in Recurrent Finsler Space (WR- F_n), *International Journal of Computer Applications*, (India) Vol.100(19), 32-34. ## العلاقة بين الموتر الأسقاطي لوايل وبعض المنحنيات الاخرى #### عبير أحمد محمد الميسري قسم الرياضيات- كلية الهندسة- جامعة عدن abeerahmed344@gmail.com ### د. عادل محمد علي القشبري استاذ مشارك قسم الرياضيات- كلية التربية- جامعة عدن adel ma71@yahoo.com #### الملخص في هذه الورقة قدم الباحثان التحقق من العلاقة بين الموتر الأسقاطي لوايل وبعض المنحنيات الاخرى حيث ان الموتر Wikh يحقق تعميم خاصية المشتقة الرابعة بالنسبة لاشتقاق كارتان وهذا النوع من الفضاء أطلقنا عليه تعميم فضاء فنسلر Wh - رباعي الاشتقاق ورمزنا إليه بالرمز التالي $.GW^h - FRF_n$ #### لائحة بالرموز Wikh : منحنى الموتر الأسقاطي لوايل الموتر الثالث لكارتان: Rikh نحنى الموتر الثاني لكارتان : Pⁱikh نحنى الموتر الرابع لكارتان : Kⁱjkh Hⁱikh : منحنى الموتر لباروالد : Wik منحنى ربتشى منحنى المتجه : W_k W^i_{ikh} منحنى الموتر المساعد ل: W_{irkh} #### معلومات البحث تاريخ الاستلام: 2023/08/08 تاريخ القبول: 2023/09/28 #### الكلمات المفتاحية فضاء فنسلر F_n ، تعميم فضاء فنسلر - W^h رباعي الأشتقاق، مشتقة كارتان من الرتبة الرابعة، الموتر الأسقاطي لوايل Wikh ، الموتر التقوسي الثالث لكارتان Rikh التقوسي