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  1. Introduction 

Epilepsy is a chronic neurological disorder that affects individuals worldwide. It is 

defined by the generation of recurrent seizures due to sudden, usually transient, bursts of 

excessive electrical activity occurring in specific groups of brain cells. Seizures are divided into 

two main forms: seizures episodic and generalized seizures (Beghi, 2020). A partial seizure 

arises when clinical or electroencephalographic evidence suggests that the incoming 

information originates from an area in the brain (Tatum et al., 2018). These seizures initially 

affect only a portion of the brain, causing symptoms in the corresponding areas of the body or 

impairment of related cognitive functions unlike a generalized seizure, which occurs when 

evidence suggests that electrical currents in the brain are more widespread (Patel & Moshé, 

2020). 

EEG, which is an important diagnostic tool, comes in handy in the diagnosis and 

management of epilepsy. An EEG measures the electrical activity generated by firing neurons 

in the brain (McInnis et al., 2023). It works by recording changes in electrical fields recorded 

by electrodes located on the patient’s scalp, these changes reflect neural activity in advanced 

computer systems such as the Nicolet-One which are used to convert EEG signals into digital 

form. So for subsequent statistical analysis, it is common to hypothesize that the mathematical 

analysis of existing EEG signals helps healthcare professionals by providing a detailed 

description of the observed brain activity, thus making sense of human cerebral cortex is 

increased (Najafi et al., 2022).  

Ahmed et al. 2000 introduced a fuzzy-based topological model aimed at identifying the 

sources of epileptic seizures. Called Fuzzy Topographic Topological Mapping (FTTM), this 

model applies a topological profile to the magnetic fields captured in magnetoencephalographic 

(MEG) recordings, using fuzzy logic methods to map the locations of epileptic foci—specific 
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areas in the brain (T. Ahmad et al., 2000). This approach was improved in 2008 by including 

EEG signal data in the analysis (T. Ahmad et al., 2008). Beyond merely identifying foci 

locations, the FTTM method also tracks important events throughout the progression of 

seizures, as evidenced in Idris's 2010 study (A. Idris et al., 2010). However, the model has faced 

criticism for potential information loss during the fuzzification and defuzzification phases. 

Subsequently, in 2024, Ameen developed a novel mathematical model that addresses these 

ambiguities in estimating seizure foci by employing integral equations, effectively 

characterizing EEG signals during seizures within this mathematical framework (Barja, 2024).  

 

2. Related Work and Preliminary Considerations 

In this section, we will explore the existing literature relevant to our research, 

highlighting key studies and findings that inform our work while also presenting fundamental 

definitions and essential theorems that underpin the concepts discussed. By examining prior 

research and establishing a clear theoretical framework, we aim to provide a comprehensive 

context for our study and clarify the significance of our contributions to the field. Additionally, 

as mentioned in the introduction, Ameen developed a new model to describe EEG signals 

during an epileptic seizure as an integral equation of the following form: 

𝜙(𝑡) = ∫ 𝐾(𝜏) 𝜐(𝑡 − 𝜏)𝜇(𝜏)𝑑𝜏 

∞

𝑡

                (2.1) 

The equation (2.1), with its kernel function 𝐾(𝜏), pre-seizure signal 𝜐(𝑡 − 𝜏), and seizure 

function 𝜇(𝜏), served as a key tool for unlocking the connection between the observed EEG 

signal 𝜙(𝑡) during a seizure and the underlying brain activity 𝜇(𝜏). By solving (2.1), we could 

estimate the seizure activity using the measured EEG signal (Barja, 2024). This breakthrough 

had profound implications, allowing us to pinpoint and localize the source of seizures within 

the brain, as demonstrated in Figure 1 (Barja, 2021). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moreover, the prior integral equation (2.1) was implemented in MATLAB, yielding 

unambiguous results in the referenced study as shown in figure 2. 

 

 

 

 

 

 

 

 

 

Figure1: Brain activity captured by EEG during an epileptic episode 

𝜙
( 𝑡
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Figure2: Integral Equation Mapping of EEG 

Signals During a Seizure 
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2.1 Definition (Switzer, 2017): Let 𝛵 be a topological space. The homology groups of 𝛵, 

denoted by 𝐻𝑛(𝛵), are defined as follows:  

• Singular homology: For each non-negative integer 𝑛, 𝐻𝑛(𝛵) is the quotient group of the 

group of 𝑛 − 𝑐ℎ𝑎𝑖𝑛𝑠, 𝐶𝑛(𝛵), by the group of 𝑛 − 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠, 𝐵𝑛(𝛵).      

• Chains: An 𝑛 − 𝑐ℎ𝑎𝑖𝑛𝑠 is a formal linear combination of 𝑛 − 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠 in 𝛵. 

• Boundaries: The boundary of an 𝑛 − 𝑠𝑖𝑚𝑝𝑙𝑒𝑥 is an (𝑛 − 1) − 𝑐ℎ𝑎𝑖𝑛𝑠.     

2.2 Definition (Bajardi, 2021): let 𝛵1 and 𝛵2 be topological spaces, and let 𝑓: 𝛵1 ⟶ 𝛵2 be a 

homeomorphism. A property 𝑃 is said to be topologically invariant if 𝛵1 has property 𝑃, then 

𝛵2 also has property 𝑃. In other words, a property is topologically invariant if it is preserved by 

continuous, bijective, and open (or closed) mappings.     

2.3 Definition (Carlsson & Vejdemo-Johansson, 2021): Topological Data Analysis (TDA) is 

a mathematical framework that uses topological tools to analyze and understand data sets. It 
involves the following steps: 

1. Simplification: The data is transformed into a simplicial complex, denoted by 𝜓. 

2. Persistence: The topological features of 𝜓 are analyzed using persistent homology, 

which measures the significance of these features over a range of scales. 

3. Interpretation: The results of the persistence analysis are interpreted to gain insights into 

the underlying structure and patterns of the data. 

2.4 Theorem (Barja, 2024): The integral equation 𝜙(𝑡) is a linear equation during an epileptic 

seizure.  

2.5 Theorem (Barja, in press): The integral equation 𝜙(𝑡) for EEG signals during an epileptic 

seizure is a continuous function of the EEG signal 𝜐(𝑡) and the seizure function 𝜇(𝜏). 

 

3. Methodology and Findings 

During the seizure, EEG electrodes are attached to the patient’s scalp, and the resulting 

average potential differences (APD) are recorded. To standardize the locations from which the 

APD were recorded, a system of electrode placement was introduced, called the International 

ten-twenty System, see figure3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Before diving into the connection between the integral equation for EEG signals and visualizing 

topological patterns and dynamics, let's establish some essential assumptions that will guide 

our exploration. 

1. Continuity of the Integral Equation: We assume that equation 2.1 represents a 

continuous mapping between the input functions 𝜐(𝑡 − 𝜏), 𝜇(𝜏) and the output function 

𝜙(𝑡). This implies that small changes in the input function will lead to correspondingly 

Figure 3: International 10-20 system 
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small changes in 𝜙(𝑡), ensuring that the essential features of the underlying dynamics 

are preserved. 

2. Topological Invariance: Continuous mappings have the remarkable property of 

preserving topological properties under continuous deformations. This means that the 

topological structure of the reconstructed EEG signal, as represented by equation 2.1, is 

inherently determined by the topological properties of the kernel function 𝐾(𝜏) and the 

input functions 𝜐(𝑡 − 𝜏), 𝜇(𝜏).  

3. Homology and Topological Features: Homology is a powerful tool that allows us to 

analyse the global structure of a space by studying its connected components, holes, and 

higher-dimensional features. In the context of the integral equation, homology can be 

used to relate critical points or singularities in 𝐾(𝜏) to the existence of specific 

topological features in the reconstructed EEG signal. 

4. Topological Data Analysis: Topological data analysis (TDA) combines topology and 

data analysis to reveal the underlying structure of complex data sets. By applying TDA 

to the integral equation, we can analyse the topological features of 𝐾(𝜏),𝜐(𝑡 − 𝜏), and 

the reconstructed EEG signal, identifying features that are relevant for understanding 

the dynamics of the EEG signal during an epileptic seizure. 

5. Applications of Topological Analysis: Insights gained from the topological analysis of 

the equation 2.1 have the potential to significantly improve the modelling and prediction 

of EEG signals. This, in turn, can lead to more accurate diagnosis and effective 

treatment strategies for epilepsy. 

These essential assumptions provide a solid foundation for understanding the connection 

between the integral equation, topological concepts, and their applications in analysing EEG 

signals during epileptic seizures. The subsequent theorems presented in this work will provide 

a formal mathematical foundation for these assumptions, solidifying our understanding of this 

complex phenomenon. 

3.1 Theorem: Let 𝐾(𝜏) and 𝜐(𝑡) be continuous functions defined on their respective domains. 

Then, the integral equation 2.1 represents a continuous mapping between the input function 

𝜐(𝑡) and the output function 𝜙(𝑡), and this mapping is topologically invariant under continuous 

deformations of 𝐾(𝜏) and 𝜐(𝑡). 

Proof.  

Continuity of the Mapping: to establish the continuity of the mapping, we consider the integral 

operator defined by: 

∫ 𝐾(𝜏) 𝜐(𝑡 − 𝜏)𝜇(𝜏)𝑑𝜏 

∞

𝑡

 

Since 𝐾(𝜏), 𝜐(𝑡 − 𝜏), and 𝜇(𝜏) are continuous functions, when 𝜏 is fixed, 𝐾(𝜏) and 𝜇(𝜏) 

function as constants with respect to 𝑡. Therefore, the product 𝐾(𝜏)𝜇(𝜏) is also a constant with 

respect to 𝑡. Consequently, the expression 𝐾(𝜏) 𝜐(𝑡 − 𝜏)𝜇(𝜏) is a continuous function of 𝑡 for 

each fixed 𝜏, as it combines the constant factor 𝐾(𝜏)𝜇(𝜏) with the continuous function 𝜐(𝑡 − 𝜏). 

As 𝑡 changes, 𝜐(𝑡 − 𝜏) varies continuously, resulting in small changes in the product 

𝐾(𝜏) 𝜐(𝑡 − 𝜏)𝜇(𝜏). The integral of a continuous function over the interval [𝑡, ∞) is also 

continuous with respect to 𝑡. Therefore, the mapping 𝜙(𝑡) is continuous.     

Topological Invariance: let 𝐾′(𝜏) and 𝜐′(𝑡)  be continuous functions derived from 𝐾(𝜏) and 

𝜐(𝑡), through continuous deformations. We define the new mapping as 

∫ 𝐾′(𝜏) 𝜐′(𝑡 − 𝜏)𝜇(𝜏)𝑑𝜏 

∞

𝑡

= 𝜙′(𝑡) 
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Since 𝐾′(𝜏),𝜐′(𝑡 − 𝜏), and 𝜇(𝜏) are continuous, the product 𝐾′(𝜏) 𝜐′(𝑡 − 𝜏)𝜇(𝜏)  is also 

continuous for each fixed 𝜏. As 𝑡 varies, 𝜐′(𝑡 − 𝜏) changes continuously, ensuring that 𝜙′(𝑡) is 

continuous as well. The mappings 𝜙(𝑡) and 𝜙′(𝑡) are topologically equivalent, as the 

continuous deformations imply that 𝐾′(𝜏) ⟶ 𝐾(𝜏) and 𝜐′(𝑡) ⟶ 𝜐(𝑡) maintain the same 

topological structure. Therefore, the essential topological features of the reconstructed signal 

𝜙(𝑡) are preserved under these deformations, confirming the topological invariance of the 

mapping, as required.  

3.2 Theorem: Let 𝐾(𝜏),𝜐(𝑡 − 𝜏), and 𝜇(𝜏) be continuous functions that possess well-defined 

homological properties. Then, the homology of the reconstructed integral equation of EEG 

signal during an epileptic seizure 𝜙(𝑡) can be described in terms of the homology of 𝐾(𝜏) and 

𝜐(𝑡).    

Proof. 

Since the integral operator 2.1 can express this operator as a linear mapping: 

ℒ( 𝜐(𝑡)) = 𝜙(𝑡), where ℒ( 𝜂) = ∫ 𝐾(𝜏) 𝜂(𝑡 − 𝜏)𝜇(𝜏)𝑑𝜏 

∞

𝑡

  

The operator ℒ  is continuous and linear since it is constructed from continuous functions (2.4 

theorem). Specifically, the product  𝐾(𝜏) 𝜐(𝑡 − 𝜏)𝜇(𝜏) is continuous for all 𝑡 and 𝜏, ensuring 

that the integral 𝜙(𝑡) is well-defined and continuous. The homological properties of ℒ can be 

analysed using properties of integral transformations, which provide insights into how the 

structure of the input functions influences the output.  

To establish a relationship between the homology of 𝜙(𝑡) and the homologies of 𝐾(𝜏) and 

𝜐(𝑡),  we recognize that the homology of the output 𝜙(𝑡) is determined by the operator ℒ.  

Specifically, this relationship can be expressed in terms of homology groups: 

𝐻(𝜙(𝑡)) ≅ 𝐻(ℒ) ≅ 𝐻(𝐾(𝜏)) ⊕ 𝐻(𝜐(𝑡)) 

This indicates that the homology of the reconstructed EEG signal 𝜙(𝑡) is fundamentally linked 

to the homological properties of both the kernel function 𝐾(𝜏) and the pre-seizure signal 𝜐(𝑡). 

Thus, we conclude that the homology of 𝜙(𝑡) can be described in terms of the homology of 

𝐾(𝜏) and 𝜐(𝑡), as required.   

3.3 Theorem: Let 𝐾(𝜏) and 𝜐(𝑡) be continuous functions representing the kernel and input 

functions in the integral equation 2.1. Then, topological data analysis (TDA) techniques can be 

utilized to explore the topological features of 𝐾(𝜏),𝜐(𝑡) and the reconstructed integral equation 

𝜙(𝑡). These analyses can yield valuable insights into the dynamics of the EEG signals during 

seizures. 

Proof. 

To apply topological data analysis (TDA) techniques to the integral equation 2.1, let us consider 

the functions 𝐾(𝜏) and 𝜐(𝑡) as continuous functions. This continuity allows us to analyse their 

topological properties through their persistent homology. We assume that a simplicial complex 

𝜓 can be constructed based on the data represented by 𝐾(𝜏) and 𝜐(𝑡). We begin by defining 

the vertices of 𝜓 as points in the domain of 𝐾(𝜏) and 𝜐(𝑡). Let Τ = {(𝑡𝑖, 𝐾(𝜏𝑗), 𝜐(𝑡𝑘))} 

represent sampled values of 𝐾 and 𝜐. The edges of the simplicial complex are formed by 

connecting vertices based on a distance metric on figure 3, while higher-dimensional simplices 

are created by connecting edges according to proximity by the data distribution.    

Once the simplicial complex 𝜓 is constructed, we compute its homology groups 𝐻𝑘(𝜓) for 

various dimensions 𝑘. The 𝑘 − 𝑡ℎ  homology group is defined as: 

𝐻𝑘(𝜓) =
𝑘𝑒𝑟(𝛿𝑘)

𝑖𝑚(𝛿𝑘+1)
 

Where 𝛿𝑘 is the boundary operator mapping 𝑘 − 𝑐ℎ𝑎𝑖𝑛𝑠 to (𝑘 − 1) − 𝑐ℎ𝑎𝑖𝑛𝑠. The 

interpretation of these groups provides insights into the topological features of the functions. 
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For instance, 𝐻0(𝜓) indicates the number of connected components, 𝐻1(𝜓) reveals cycles or 

holes, and 𝐻2(𝜓) corresponds to voids or higher-dimensional holes. Therefore, by analysing 

the homology groups 𝐻𝑘(𝜓), we uncover essential topological features of 𝐾(𝜏) and 𝜐(𝑡). These 

features can be correlated with the dynamics of 𝜙(𝑡) equation, enhancing our understanding of 

seizure activity. As a result, the TDA of 𝜙(𝑡) can provide valuable insights into the dynamics 

of the EEG signal, as required.       

 

4. Discussion  

The three theorems presented in the previous section collectively enhance our understanding of 

the relationship between EEG signals during epileptic seizures and their topological properties. 

3.1 Theorem establishes that the integral equation 2.1 represents a continuous mapping, 

ensuring that small changes in input functions 𝜐(𝑡) lead to proportionate changes in the output 

𝜙(𝑡), which preserves essential seizure dynamics. This continuity reassures researchers and 

clinicians about the reliability of mathematical models in capturing brain activity. 3.2 Theorem 

correlates the homological properties of the reconstructed EEG signal with those of 𝜐(𝑡), 

suggesting that specific topological features can serve as indicators of seizure activity, thereby 

aiding in targeted interventions. Finally, 3.3 Theorem integrates topological data analysis 

(TDA) techniques, revealing significant patterns in EEG data that traditional methods might 

overlook. By analysing the homology groups of the constructed simplicial complex, this 

theorem provides insights into seizure dynamics that may lead to improved diagnostic tools and 

therapeutic strategies. Collectively, these theorems not only validate the application of 

persistent homology and TDA in neuroscience, but also pave the way for future investigations 

into the complex interplay between topological features and neurological phenomena, 

ultimately enhancing clinical decision-making in epilepsy management. 

 

5. Conclusion 

This study demonstrates the effective application of persistent homology in analysing EEG 

signals during epileptic seizures. By framing the EEG signals as integral equations, we 

established a robust mathematical framework that integrates topological data analysis with 

neurological research. The findings reveal significant topological features that correlate with 

the dynamics of seizure activity, providing deeper insights into the structure of brain function 

during epileptic episodes. 

 

6. Future Directions 

To further enhance the understanding and application of topological analysis in EEG research, 

several avenues for future studies can be explored: 

• Real-Time Monitoring: Developing and integrating fuzzy topological data analysis 

methods for real-time EEG monitoring, addressing signal uncertainties and improving 

seizure prediction. 

• Machine Learning Integration: Combining fuzzy topological data analysis methods with 

machine learning to enhance seizure classification by capturing subtle and ambiguous 

topological patterns. 

• Diverse Data Analysis: Testing fuzzy topological data analysis methods on EEG data 

from diverse patient populations to improve generalizability in epilepsy diagnosis and 

management. 

• Longitudinal Studies: Using fuzzy topological data analysis in longitudinal research to 

track topological feature evolution, offering insights into epilepsy progression and 

treatment effectiveness. 
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 الكلمات المفتاحية 
شارات تخطيط كهربية الدماغ،  إ

معادلة تكاملية، التماثل، تحليل 
 البيانات التبولوجية 

 الملخص 
، أداة قيمة ومفضلة لتشخيص EEGيعد تخطيط كهربية الدماغ، المعروف باسم 

اضطرابات الدماغ المختلفة، وخاصة الصرع، نظراً لطبيعته غير الجراحية وقدرته  
على توفير رؤى شاملة لوظيفة الدماغ من خلال الجهد الكهربائي. ومع ذلك، غالباً 
ما ينُظر إلى نتائج تقييمات تخطيط كهربية الدماغ أثناء النوبات الصرعية على أنها 

ء وليست نمطًا منظماً. يمكن النظر إلى إشارات تخطيط كهربية الدماغ ضوضا
أثناء نوبة الصرع كمعادلة تكاملية، ويوفر الهيكل التبولوجي الجبري أداة لتحليل 

شكل وبنية بيانات إشارة تخطيط كهربية الدماغ من خلال تطبيق مفاهيم جديدة مثل 
لتماثل والتماثل المستمر. في هذه الدراسة، سوف نوضح تطبيق التماثل المستمر  ا

في تحليل إشارات تخطيط كهربية الدماغ أثناء النوبات الصرعية من خلال إنشاء 
تمثيل تبولوجي وديناميكي منظم للمعادلة التكاملية لاشارات تخطيط كهربية الدماغ  

 أثناء النوبة الصرعية. 
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